
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Query Answering with DBoxes is Hard 1

Enrico Franconi2 Yazmı́n Angélica Ibáñez-Garćıa2

Free University of Bozen-Bolzano

İnanç Seylan3

Universität Bremen

Abstract

Data in description logic knowledge bases is stored in the form of an ABox. ABoxes are often con-
fusing for developers coming from relational databases because an ABox, in contrast to a database
instance, provides an incomplete specification. A recently introduced assertional component of a
description logic knowledge base is a DBox, which behaves more like a database instance. In this
paper, we study the data complexity of query answering in the description logic DL-LiteF extended
with DBoxes. DL-LiteF is a description logic tailored for data intensive applications and the data
complexity of query answering in DL-LiteF with ABoxes is tractable (in AC0). Our main result
is that this problem becomes coNP-complete with DBoxes. In some expressive description logics,
query answering with DBoxes also leads to a higher (combined) complexity than query answer-
ing with ABoxes. As a proof of concept, we relate query answering in ALCFIO, i.e., ALC with
Functional and Inverse roles, and nOminals to the same problem in ALCFI with DBoxes. The
exact complexity of the former is an open problem in the description logic literature. Here we show
that query answering in ALCFIO and ALCFI with DBoxes are mutually reducible to each other
in polynomial time.

All the proofs in this paper are available in the appendix for the reviewers’ convenience.

Keywords: Description logics, conjunctive queries, hybrid logic, model theory.

1 Introduction

Description Logics (DLs) constitute a family of logics commonly used in knowl-
edge representation; and they are the logical underpinning of the OWL 2 Web
Ontology Language [3]. A standard use case for DL-based systems is to store

1 This work was supported by DFG SFB/TR 8 “Spatial Cognition”
2 Email: [franconi|ibanezgarcia]@inf.unibz.it
3 Email: seylan@informatik.uni-bremen.de

c©2011 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:franconi@inf.unibz.it
mailto:seylan@informatik.uni-bremen.de

Franconi, Ibáñez-Garćıa, and Seylan

the facts about the application domain in a knowledge base (KB) and then
query the KB. Traditionally, a DL KB consists of two components: a TBox
and an ABox [3]. The TBox is the intensional part of the KB. For example,
in a TBox one can assert that a father is a man with at least one child. The
ABox on the other hand is for asserting facts about individuals, e.g., John is
a father, Mary is a daughter of John, etc. As for querying the KB, a popular
query language is conjunctive queries (CQs) which originate from database
theory [1].

The ABox of a DL KB resembles a database instance since it talks about
individuals. In contrast to a database instance, an ABox provides an in-
complete specification for the predicates appearing in it. Because of this
incompleteness, when one talks about answers of a query over a DL KB,
one uses the notion of certain answers, i.e., answers which hold in every
model of the KB. To elaborate, consider the DL KB K = (T ,A), where
T = {Employee v ∃worksFor,∃worksFor− v Project} and
A = {Employee(john), Project(prja)}. In the TBox T , we assert that every
employee works for a project; in the ABox A, we assert that john is an em-
ployee and prja is a project. By the semantics of an ABox, we have that there
are some models of K for which somebody works for prja and some models
for which nobody works for it. Therefore, the certain answers of the query
worksFor(x, prja), which asks for all employees working for prja, is empty.

This semantical difference between ABoxes and database instances is often
confusing for developers with experience in relational database management
systems. In order to avoid such problems, DBoxes were introduced recently as
an alternative assertional component of DL KBs [16]. Syntactically, a DBox
looks very similar to an ABox. For example, the set of assertions above also
constitute a DBox D. The difference between A and D is in the semantics
because a DBox is similar to a database instance in that the absence of infor-
mation is interpreted as negative information. In particular, if we replace A
by D in K, then the certain answers of the query worksFor(x, prja) is john.
DBoxes are closely related to nominals from hybrid logics [2]. In this respect,
we think that they provide a nice connection between hybrid logics, DLs, and
databases.

For these reasons, it is a natural research topic to study the complexity of
query answering in DLs with DBoxes. In this paper, we choose to study this
problem for a DL that is oriented towards data intensive applications since
DBoxes are the data components of a KB. In particular, we study the data
complexity of query answering in DL-LiteF extended with DBoxes. DL-LiteF
belongs to the DL-Lite family of DLs [6]. The data complexity of query an-
swering in these logics (with ABoxes) is tractable since these problems can be
reduced to query answering in relational databases. Our main result is that
query answering in DL-LiteF with DBoxes is coNP-complete.

2

Franconi, Ibáñez-Garćıa, and Seylan

DL-LiteF with DBoxes is closely related to the expressive DL ALCFIO,
i.e., ALC with Functional and Inverse roles, and nOminals. This is because
DL-LiteF with DBoxes contains all these three constructs in a restricted way.
Since the exact (combined) complexity of query answering in ALCFIO is an
open problem in the DL literature, our result about DL-LiteF with DBoxes is
also interesting in this sense. As another contribution, we identify an expres-
sive DL, namely ALCFI extended with DBoxes, such that query answering
in this logic is polynomially reducible to the same problem in ALCFIO and
vice versa. As a consequence of these reductions, any complexity result about
ALCFI with DBoxes is easily transferable to ALCFIO. Another conse-
quence of this result is that we identify an expressive DL, namely ALCFI,
for which query answering with DBoxes is strictly harder (coN2ExpTime-
hard [7]) than query answering with ABoxes (2-ExpTime-complete [8]).

The paper is structured in the following way. In Section 2, we review some
basic notions from description logics and conjunctive queries. In particular,
we define the syntax and semantics of the logics we are interested in, as well as,
how conjunctive queries are matched in models. Section 3 introduces the no-
tion of DBoxes as an alternative way of representing extensional knowledge in
description logics; together with the notion of query entailment with DBoxes.
In Section 4, we establish the main results regarding the data complexity of
query entailment in DL-LiteF with DBoxes. Finally, in Section 5 we show that
query entailment in ALCFIO and query entailment in ALCFI with DBoxes
are problems that are polynomially reducible to each other.

2 Preliminaries

2.1 ALCFIO

The language of ALCFIO contains concept names NC = {A0, A1, . . . , }, role
names NR = {P0, P1, . . .}, and individual names NI = {a0, a1, . . .}, such that
NC , NR and NI are countably infinite and mutually disjoint sets. Complex
roles R and concepts C of this language are defined as follows:

R ::= P | P−,

C ::= > | A | {a} | ¬C | C1 u C2 | ∃R.C |≤ 1R

ALCFI-concepts are defined as above, except they exclude nominals, i.e.,
concepts of the form {a}.

An ALCFIO-TBox T is a finite set of concept inclusion axioms (or simply
concepts inclusions) of the form:

C1 v C2.

3

Franconi, Ibáñez-Garćıa, and Seylan

An ALCFIO-ABox is a finite set of assertions of the form:

C(a), P (a, b),

where C is a complex concept, P ∈ NR, a, b ∈ NI . For a role R we set
Inv(R) := P− if R = P ∈ NR, and Inv(R) := P if R = P−, P ∈ NR.

As usual in description logics, the semantics of ALCFIO is given in terms
of interpretations. An interpretation I = (∆I , ·I), consists of an non empty
domain ∆I , and an interpretation function ·I that assigns to each A ∈ NC a
subset AI of ∆I , to each P ∈ NR a binary relation P I ⊆ ∆I × ∆I over the
domain, and to each a ∈ NI an element aI ∈ ∆I . Unless otherwise stated, we
do not make the unique name assumption (UNA) for individual names, i.e.,
for all a, b ∈ NI and all interpretations I, if a 6= b then it is not necessarily
the case that aI 6= bI .

Furthermore, ·I is extended to complex ALCFIO-concepts inductively as
follows:

>I = ∆I ,

(P−)I = {〈t, s〉 | 〈s, t〉 ∈ P I},
{a}I = {aI},

(¬C)I = ∆I \ CI ,
(C uD)I = CI ∩DI ,
(∃R.C)I = {s ∈ ∆I | ∃t ∈ ∆I .〈s, t〉 ∈ RI ∧ t ∈ CI},
(≤ 1R)I = {s ∈ ∆I | ∀t, u ∈ ∆I .〈s, t〉 ∈ RI ∧ 〈s, u〉 ∈ RI → t = u}.

The satisfaction relation |= is also standard. Given an interpretation I, I |=
C1 v C2 iff CI1 ⊆ CI2 ; I |= C(a) iff aI ∈ CI , and I |= P (a, b) iff 〈aI , bI〉 ∈ P I .

A knowledge base K = (T ,A) is said to be satisfiable (or consistent) if
there is an interpretation I satisfying all members of T and A. In this case
we write I |= T (as well as I |= T and I |= A) and say that I is a model of
K (and of T and A).

For an ALCFIO-concept C, we denote as sub(C) the set of all its sub-
concepts, (i.e., subformulae). For an ALCFIO-TBox T , con(T) denotes the
smallest set of concepts such that (i) if C1 v C2 ∈ T then C1, C2 ∈ con(T);
and (ii) if C1 ∈ con(T) and C2 ∈ sub(C1) then C2 ∈ con(T).

2.2 DL-LiteF

Basic DL-LiteF -concepts are defined as follows.

B ::= ⊥ | A | ∃R
4

Franconi, Ibáñez-Garćıa, and Seylan

A DL-LiteF TBox, is a finite set of concept inclusion axioms of the form:

B1 v B2, B1 v ¬B2, or (funct R)

As usual, the semantics of DL-LiteF -concepts is given in terms of interpre-
tations. As DL-LiteF -concepts are special cases of ALCFIO-concepts, e.g., ⊥
corresponds to ¬>, and ∃R to ∃R.>, we omit the explicit definition of the
semantics here.

The satisfaction relation is defined in the same way as for ALCFIO. We
only need to extend it for the (global) functionality axioms, i.e., given an
interpretation I, I |= (funct R) if for every s, t, u ∈ ∆I , whenever 〈s, t〉 ∈ RI
and 〈s, u〉 ∈ RI , then t = u.

For a DL-LiteF -TBox, con(T) is the smallest set of concepts such that (i)
if B1 v B2 ∈ T then B1, B2 ∈ con(T); and (ii) if B1 v ¬B2 ∈ T then
B1, B2 ∈ con(T), i.e., the set of basic concepts occurring in T .

2.3 Conjunctive Queries

Conjunctive queries (CQs) are the most frequently asked queries in relational
database systems [1]. These queries are definable by existential positive first-
order formulas and are preserved under homomorphisms. CQs are also com-
mon in DLs. In this section, we define our notation for CQs. In particular,
we view concept and role names as unary and binary predicates, respectively.
Since DLs are fragments of first-order logic with at most two variables, it does
not make much sense to consider predicates of arity more than two.

Let NV be a countably infinite set of variables which is disjoint from NI , i.e.,
the set of individual names. Together, NV and NI form the set NT of terms. A
conjunctive query (CQ) is a first-order formula of the form ∃y.ϕ(x, y), where

• x = x1, . . . , xn and y = y1, . . . , ym are vectors of variables and
• ϕ is a conjunction of concept atoms A(t) and role atoms P (t, t′), where
A ∈ NC , P ∈ NR, and t, t′ ∈ NT .

The variables in x are called distinguished variables ; and the ones in y are
undistinguished. We call the query k-ary if there are k distinguished variables.
For a CQ q, we denote by terms(q) the set of terms in q.

Let q = ∃y.ϕ(x, y) be a k-ary CQ and I an interpretation. A match for q in
I is a mapping ν : terms(q)→ ∆I such that ν(a) = aI for all a ∈ terms(q)∩NI

and all atoms in q are satisfied, i.e.,

• ν(t) ∈ AI for all A(t) ∈ q and
• 〈ν(t), ν(t′)〉 ∈ P I for all P (t, t′) ∈ q.
If ν is a match for q in I then we write I, ν |= q. If there is a match for q in
I then we denote this by I |= q.

5

Franconi, Ibáñez-Garćıa, and Seylan

For a k-tuple of individual names a = a1, . . . , ak, a match ν for q in I is
called an a-match if ν(xi) = aIi , i ≤ k. We say that a is an answer to q in an
interpretation I if there is an a-match for q in I and use ans(q, I) to denote
the set of all answers to q in I.

3 DBoxes

In this section, we introduce the notion of knowledge bases with DBoxes. The
syntax and semantics of DBoxes is given by the following definition:

Definition 3.1 A DBox is a finite set of assertions of the form A(a) and
P (a, b), where A ∈ NC , P ∈ NR, and a, b ∈ NI . The set of individual names
occurring in a DBox D is called the active domain of D and it is denoted
by adom(D). The signature of a DBox D, denoted as sig(D), consists of
the concepts and role names occurring in D, denoted as con(D) and rol(D),
respectively.

Let D be a DBox and I an interpretation. I |= D iff

• aI 6= bI , for all a, b ∈ adom(D) with a 6= b;
• AI = {aI | A(a) ∈ D}, for every A ∈ con(D);
• P I = {〈aI , bI〉 | P (a, b) ∈ D}, for every P ∈ rol(D).

Intuitively, the semantics of a DBox D, enforces the UNA for the individual
names in adom(D), and that the extensions of the concepts and roles occurring
in D, i.e., sig(D), are given by the assertions in D, and coincide in every model
I of D.

Let L be either DL-LiteF , ALCFI or ALCFIO. A L knowledge base
with a DBox (L -KB) K is a pair (T ,D), where T is an L -TBox and D is a
DBox. For a L -KB K = (T ,D), we define the following notions:

• con(K) = con(T) ∪ {A ∈ NC | A(a) ∈ D} ∪ {∃R.>,∃R−.> | R(a, b) ∈ D};
• rol(K) the set of roles occurring in T or D;
• sig(K) the set of concept names and role names occurring in T or D;
• adom(K) the union of adom(D) and all individuals that appear as nominals,

if any, in T .

Let I be an interpretation and K = (T ,D). We have that I |= K iff I |= T
and I |= D. We say that K is satisfiable if there is some interpretation such
that I |= K.

A certain answer of a k-ary CQ q with respect to the L -KB K = (T ,D)
is a k-tuple a ∈ adom(D)k such that a ∈ ans(q, I) for all models I of K. The
set of certain answers to q over K will be denoted by cert(q,K). Moreover,
K |= q iff for all interpretations I, I |= K implies I |= q.

The CQ answering problem can be formulated as follows: given an L -KB
K = (T ,D) and a CQ q, to compute cert(q,K). The CQ entailment problem

6

Franconi, Ibáñez-Garćıa, and Seylan

is given an L -KB K = (T ,D) and a boolean CQ q, i.e., a CQ without any
distinguished variables, to decide whether K |= q.

Observe that for a k-ary CQ q = ϕ(x), we have cert(q,K) = {a ∈
adom(D)k | K |= ϕ(a)}, where ϕ(a) denotes the substitution of x by a in
ϕ and is a boolean CQ. Since CQ answering can be reduced to CQ entailment
in this way and that CQ entailment is a decision problem, in the rest of this
paper we will study CQ entailment.

4 Data Complexity of CQ Entailment in DL-LiteF

In this section, we study the data complexity of query entailment in DL-LiteF
with DBoxes. Data complexity is a common measure of complexity in databases
[1]. When considering data complexity, the only input considered is the
database instance, while the query is assumed to be fixed.

Data complexity of query answering in DLs (w.r.t. KBs with ABoxes)
is well-studied [5,12]. In this setting, the only input is the ABox, while the
TBox and the query are regarded as fixed. As stated in the previously, we
are interested in studying the data complexity of query answering in DL-LiteF
with DBoxes. In this setting, we consider the DBox as the input, and again
the TBox and the query are regarded as fixed.

Our main result in this section is Theorem 4.16. We show that query
entailment in DL-LiteF is harder when we consider KBs with DBoxes. It is
known that query entailment in DL-LiteF with ABoxes is in AC0, for data
complexity [6]. However, as we show in Lemma 4.1, the problem becomes
coNP-hard for data complexity, when DBoxes are considered. Moreover, we
show that this complexity bound is tight (Theorem 4.16). In particular, we
show a match with the data complexity of CQ entailment in expressive DLs
such as SHIQ, SHOI, and SHOQ [12].

Lemma 4.1 CQ entailment in DL-LiteF with DBoxes is coNP-hard for data
complexity.

Proof. The proof is by a reduction of the 3-colorability problem for undi-
rected graphs to non-entailment of a CQ w.r.t. a DL-LiteF -KB with DBox.
An undirected graph G = 〈V , E〉 with node set V and edge set E , is said to
be 3-colorable if each node in V can be assigned exactly one of three colors,
in such a way that no two adjacent nodes are assigned the same color. 3-
colorability is the problem of deciding whether a given graph is 3-colorable.
It is well-known that 3-colorability is NP-complete [13].

Given an (finite) undirected graph G = 〈V , E〉, let KG = (T ,DG), where

DG = {V (av) | v ∈ V} ∪ {E(av, av′) | 〈v, v′〉 ∈ E} ∪ {C(r), C(g), C(b)}

and T = {V v ∃R, ∃R− v C}, and let q = ∃x, y, z[E(x, y)∧R(x, z)∧R(y, z)].

7

Franconi, Ibáñez-Garćıa, and Seylan

In the definition above, we have for all v, v′ ∈ V , v 6= v′ implies av 6= av′ , and
the semantics of the DBox allows us to fix the extension of C in every model
of KG, thus expressing the fact that there are exactly three colors used for
coloring. The role name R basically corresponds to the hasColor relation,
and the meaning of V and E are self-explanatory. Observe that T and q does
not depend on G, which is essential for the correctness of the reduction for
data complexity. It can now be shown that G is 3-colorable iff KG 6|= q. 2

For the upper bound, one can trivially embed DL-LiteF with DBoxes to
ALCFIO. However, the data complexity of query answering in ALCFIO is
unknown. Also note that DL-LiteF with DBoxes can not be trivially embedded
in SHIQ, SHOI, and SHOQ since each of these logics lack one of the con-
structs of DL-LiteF with DBoxes. For these reasons, we will establish a weak
forest model property for our logic in order to show the upper bound. These
models consist of several trees and the roots of these trees may be arbitrarily
connected to each other. Moreover, there may be back edges from non-root
nodes to root nodes. We observe that it is not enough to take only active
domains elements as the roots of these trees. This is because the interac-
tion between DBox assertions, inverse roles, and functionality assertions may
enforce the existence of elements in the domain that act like active domain
elements although they are not. These elements are called new nominals [14].
In order to devise a decision procedure, we have to establish a bound on the
number of new nominals, and hence the number of trees in our models. This
is the same problem that one faces for CQ entailment in ALCFIO. Note
that in high contrast to ALCFIO, the ‘light’ nature of DL-LiteF allows us to
establish a polynomial upper bound on the size of new nominals.

The key observation for establishing a bound on the number of new nom-
inals is that they belong to concepts whose instances are bounded in every
model of the KB. Clearly, DBox concepts have a bounded extension in every
model. However, TBox axioms may enforce some other concepts, not occur-
ring in the DBox, to have a bounded extension as well. We formalize this in
the following definition.

Definition 4.2 Let K = (T ,D) be a DL-LiteF -KB with a DBox. Then
Bcon(K) is inductively defined as follows:

• Bcon(K)0 = {B ∈ con(K) |B ∈ con(D)}∪{∃P ,∃P− ∈ con(K) | P ∈ rol(D)}
• Bcon(K)i+1 = {B1 ∈ con(K) | B1 v B2 ∈ T and B2 ∈ Bcon(K)i} ∪
{∃Inv(R) ∈ con(T) | (funct R) ∈ T and ∃R ∈ Bcon(K)i}

As there are only finitely many concepts in con(K), there exists j, such that
Bcon(K)j = Bcon(K)j+1. We set Bcon(K) := Bcon(K)j.

Lemma 4.3 Let K = (T ,D) be a DL-LiteF -KB with a DBox. We have that

•]Bcon(K) ≤ |K|, and

8

Franconi, Ibáñez-Garćıa, and Seylan

• for every model I of K and for all B ∈ Bcon(K),](BI) ≤]adom(D).

In order to establish a forest model property for DL-LiteF with DBoxes,
we will work on structures based on graphs instead of interpretations. We call
these structures K-graphs because of their intimate connection with a given
KB K. Such structures are commonly used in the literature and have many
names, e.g., Hintikka structure [15], model graph [9], or even tableau [10].
Modulo some differences, building blocks of these structures are sets of finite
concepts each of which is a subset of a relevant concept closure.

Definition 4.4 Let K = (T ,D) be KB. A K-graph is a tupleM = (V , E ,L),
where (V , E) is a directed graph with adom(D) ⊆ V , and L is a function
associating with every v ∈ V a subset of con(K) and with every 〈v, v′〉 ∈ E a
subset of rol(K). The set of nominals of M is the set of nodes nom(M) =
{v ∈ V | L(v)∩Bcon(K) 6= ∅}. We use the notation RM(v, v′) to express that

• 〈v, v′〉 ∈ E and R ∈ L(v, v′), or
• 〈v′, v〉 ∈ E and Inv(R) ∈ L(v′, v).

We are interested in certain K-graphs that satisfy additional properties.

Definition 4.5 Let K = (T ,D) be a DL-LiteF -KB with a DBox and letM =
(V , E ,L) be a K-graph. We sayM is a K-graph quasimodel if for all v, v′ ∈ V ,
M satisfies the following conditions:

(PAD) for all A ∈ con(D), A ∈ L(v) iff v = a and A(a) ∈ D, for some a ∈
adom(D);

(PRD) for all R ∈ rol(D), RM(v, v′) iff v = a, v′ = b, R(a, b) ∈ D, for some
a, b ∈ adom(D);

(P+
v) for all B1 v B2 ∈ T , if B1 ∈ L(v) then B2 ∈ L(v);

(P−v) for all B1 v ¬B2 ∈ T , if B1 ∈ L(v) then B2 6∈ L(v);

(P⇐∃) for all ∃R ∈ con(K), if there is some v′ ∈ V with RM(v, v′) then ∃R ∈
L(v);

(P≤) for all (funct R) ∈ T , there is at most one v′ ∈ V with RM(v, v′).

M is a called a model if in addition to the properties above, it satisfies the
following property.

(P⇒∃) for all ∃R ∈ con(K), if ∃R ∈ L(v) then there is some v′ ∈ V with
RM(v, v′).

We write M ` K to denote that M is a K-graph model.

Query matches in K-graphs are very similar to query matches in interpre-
tations.

Definition 4.6 A match ν for a CQ q in a K-graphM = (V , E ,L) is a total

9

Franconi, Ibáñez-Garćıa, and Seylan

function ν : terms(q) → V such that ν(a) = a for each individual name
a ∈ terms(q). We write M, ν ` q if for every A(t) ∈ q, A ∈ L(ν(t)); and for
every R(t, t′) ∈ q, RM(ν(t), ν(t′)).

The following lemma is a consequence of the definitions above, and estab-
lishes that K-graph models capture faithfully the semantics of DL-LiteF -KBs
with DBoxes.

Lemma 4.7 Let K = (T ,D) be a DL-LiteF -KB with a DBox and q be a CQ.
Then K 6|= q if and only if there is some K-graph model M such that M 6` q.

Intuitively, a K-graphM is called a K-forest if the structure resulting from
removing all edges going to nominals of M is a forest, i.e., a set of disjoint
trees.

Definition 4.8 Let M = (V , E ,L) be a K-graph. The graph Gf = (V , Ef),
where

Ef = E \ {〈v, v′〉 ∈ E | v′ ∈ nom(M)}
is called the f -pruning ofM. We callM a K-forest if its f -pruning is a forest.
The roots of a K-forest M is the roots of its f -pruning and it is denoted by
roots(M). The branching degree of a K-forest M is the branching degree of
its f -pruning and it is denoted by bdegree(M).

The K-forests we are interested in have as their roots exactly the nominals
and their tree parts are uniform.

Definition 4.9 Let M = (V , E ,L) be a K-forest. Then M is called uniform
if

(U1) for all 〈v, v′〉 ∈ E , if v′ ∈ V\nom(M) then for some ∃R ∈ L(v), L(v, v′) =
{R} and L(v′) = {B ∈ con(T) | T |= ∃Inv(R) v B};

(U2) bdegree(M) ≤ |T | and roots(M) = nom(M);

(U3) for all 〈v, v′〉 ∈ E , if v ∈ V \ nom(M), v′ ∈ nom(M), and R ∈ L(v, v′)
then (funct Inv(R)) 6∈ T .

It is enough to consider only uniform forest-models of a KB (with poly-
nomially many roots) for deciding CQ entailment. We establish this in the
following.

Theorem 4.10 Let K = (T ,D) be a DL-LiteF -KB and let q be a CQ. Then
K 6|= q if and only if there exists a uniform K-forest model M with M 6` q.

Thus, we can decide CQ non-entailment by finding a K-forest modelM with
M 6` q. At this point, we are faced with the problem that we can not simply
construct a K-forest model M and check whether M 6` q since M can be
infinite. However, as we will show, it is possible to represent K-forest models
in a finite way. Here the crucial observation is that in a sufficiently big tree

10

Franconi, Ibáñez-Garćıa, and Seylan

in a uniform K-forest model, there is a bounded number of subtrees up to
isomorphism.

Definition 4.11 Let M1 = (V1, E1,L1) and M2 = (V2, E2,L2) be two K-
graphs. Then M1 and M2 are called isomorphic, written M1

∼= M2, if and
only if there is a bijection β : V1 → V2 such that:

• for all a ∈ adom(D) and v ∈ V1, v = a iff β(v) = a;
• for all v ∈ V1, L1(v) = L2(β(v));
• for all v, v′ ∈ V1, 〈v, v′〉 ∈ E1 iff 〈β(v), β(v′)〉 ∈ E2;
• for all 〈v, v′〉 ∈ E1, L1(v, v

′) = L2(β(v), β(v′));

If we want to specify the bijection explicitly, we use the notationM1
∼=βM2.

Definition 4.12 Let n ∈ N be a fixed natural number andM = (V , E ,L) be
aK-forest. An n-tree inM is the restriction ofM to {v}∪descnGf

(v)∪nom(M),

for some v ∈ V ∈ \nom(M). Here descnGf
(v) denotes all nodes v′ of the subtree

of Gf rooted at v such that the distance between v and v′ is at most n.

Now we define the notion of blocking which is a standard technique for devising
tableau-based decision procedures in DLs. Our definitions are based on the
ones in [12] with slight variations in the notation.

Definition 4.13 LetM = (V , E ,L) be a K-forest. We say that an n-treeM′

in M has a witness if there is an n-tree M′′ in M such that

• M′ ∼=M′′,
• V ′ ∩ V ′′ = ∅,
• v′ = descGf

(v), where v′ and v are roots of M′ and M′′, respectively and
descGf

(v) denotes the set of all descendants of v on the subtree of Gf rooted
at v.

In this case, M′′ is called a witness of M′.

A v ∈ V is directly n-blocked if v 6∈ nom(M) and there is an n-tree M′

in M such that v is a leaf of M′ and M′ has a unique witness. A v ∈ V
is indirectly n-blocked if v ∈ descGf

(v′) for some directly n-blocked node v′.
Finally v ∈ V is n-blocked if it is directly or indirectly n-blocked.

The class of structures we define next is the finite representation of K-forest
models that we are looking for.

Definition 4.14 A uniform K-forest M = (V , E ,L) is called an Kn-forest
model if

• V contains no indirectly n-blocked node;
• M is a quasimodel, which satisfies the following property:

(Pn∃) for all ∃R ∈ con(K) and v ∈ V that is not n-blocked, if ∃R ∈ L(v)
then there is some v′ ∈ V with RM(v, v′).

11

Franconi, Ibáñez-Garćıa, and Seylan

Theorem 4.15 Let K = (T ,D) be a DL-LiteF -KB with a DBoxes and let q
be a CQ. Then K 6|= q if and only if there is some K|q|-forest model M with
M 6` q.

Proof. [Sketch] Let K = (T ,D) be a DL-LiteF -KB and let q be a CQ with
|q| = n. We assume that q is connected. A query q is connected if, for all
t, t′ ∈ terms(q), there exists a sequence t1, . . . , tm such that t1 = t, tm = t′,
and for all i ∈ {1, . . . ,m− 1}, there exists a role name R such that R(ti, ti+1)
or R(ti+1, ti) is a conjunct of q. This assumption is w.l.o.g. since entailment
of q can be decided by checking the entailment of each connected component
of q (viewing q as an undirected graph) separately [14].

(⇒) This is the easy direction of the proof. Suppose K 6|= q. Then by Theo-
rem 4.10, there is some uniform K-forest model M = (V , E ,L) with M 6` q.
We use an inductive construction. As the base case, we set M0 = M. Now
for the step from Mi to Mi+1, first we choose a node v ∈ Vi that is indi-
rectly n-blocked. Then we define Mi+1 as the restriction of Mi to nodes
Vi \ ({v} ∪ desc(Gi)f

(v)), i.e., we ‘chop off’ the tree rooted at v. We have that
|Mi+1| < |Mi| and Mi+1 lacks the tree rooted at v. Let M′ = (V ′, E ′,L′) be
the K-forest obtained at the limit of this construction. It is easy to see that
for every v ∈ V ′, v is either not n-blocked or v is directly n-blocked. Because
of this and the fact that M is a uniform K-forest model, we have that M′ is
a uniform Kn-forest model. Moreover, we have M′ 6` q since M0 6` q and for
each step i, Mi+1 is a strict substructure of Mi.

(⇐) Suppose M = (V , E ,L) is a uniform Kn-forest model with M 6` q. The
proof is analogous to the one given in [14] (Lemma 42). First we unravel M
into a K-forest. Unravelling is a standard construction in modal logics [4]; but
in the presence of DBoxes (nominals), inverse roles, and functionality, one has
to be more careful. This is because the standard construction can easily lead
to the violation of functionality assertions. However, the uniformity of M,
more precisely (U3), ensures that this does not happen.

Let M′ be the unravelling of M. It follows by the properties of M that
M′ is a uniform K-forest model. One has to show that M′ 6` q. The proof
is then by contradiction. Suppose M′ ` q. By using the connectedness of q
andM′ ` q, we can ensure to find a match ν for the query inM, which then
leads to a contradiction. 2

Every uniform K|q|-forest model M has a finite size. This is easy to see
because there are finitely many |q|-trees inM that are distinct up to isomor-
phism. For bounds on the size of K|q|-forest models, the reader is referred to
[11,12,14]. Here the interesting observation is that the size of |q|-trees in M
depend on the size of the T and q. This can be explained as follows. Since the
branching degree of M is bounded by |T |, the branching degree of a |q|-tree
in M is also bounded by |T |. Moreover, the height of a |q|-tree is bounded

12

Franconi, Ibáñez-Garćıa, and Seylan

by |q|. This means, if we take |T | and |q| as constant, which is what we will
do for data complexity, we have that the size of each tree in M is constant.

Our algorithm for deciding the non entailment of a boolean CQ q from a
KB K is as follows. We first guess a K|q|-forestM with bdegree(M) ≤ |T | and
roots(M) ≤ |D|+ |D| · |T |. Since by assumption, |T | and |q| are constant, the
size of M is polynomial in |D|. Verifying if M is a uniform K|q|-forest model
can be done in polynomial time. IfM is not a K|q|-forest model then we return
“no”. Otherwise, we verify if q matches against this structure. Since |q| is
constant, this can be done in time polynomial in |D|. Hence, we have a non-
deterministic algorithm that runs in PTime and decides the non-entailment
of q from K. This immediately yields a coNP upper bound for deciding CQ
entailment from a KB. Then by Lemma 4.1, we obtain the following theorem.

Theorem 4.16 CQ entailment in DL-LiteF with DBoxes is coNP-complete
for data complexity.

5 Relating ALCFIO to ALCFID

The exact (combined) complexity of CQ entailment in ALCFIO (and its
extensions above) is a major open problem in DLs: it is known to be decidable
[14] (without any upper complexity bound) and coN2ExpTime-hard [7]. In
this section, we prove Theorem 5.1, which gives a new perspective to this
problem in terms of DBoxes. We believe that this may be useful for tackling
the problem.

Theorem 5.1 CQ entailment in ALCFI with DBoxes is reducible to CQ
entailment in ALCFIO with ABoxes and vice versa.

We start by reducing reasoning with DBoxes to reasoning with nominals in
a rather straightforward way. Let K = (T ,D) be a ALCFI-KB, AD = {a ∈
adom(D) | A(a) ∈ D, and ∃PD = {a ∈ adom(D) | ∃a′ ∈ adom(D), P (a, a′) ∈
D}. τO(K) = (T ∪T ′,A) is the ALCFIO-KB such that A = D and T ′ consist
of the following sets of inclusion axioms:

TUNA = {{a} v ¬{b} | a, b ∈ adom(D), a 6= b};
Tcon(D) =

{
A ≡ {a1} t . . . t {an} | A ∈ con(D), ai ∈ AD, 1 ≤ i ≤ n

}
;

Trol(D) = {{a} v ∃P.{b1} u . . . u ∃P.{bn} | P ∈ rol(D), P (a, bi) ∈ D, 1 ≤ i ≤ n} ;
∪{{a} v ∀P.({b1} t . . . t {bn}) | P ∈ rol(D), P (a, bi) ∈ D, 1 ≤ i ≤ n} ;

∪
{
∃P.> v {a1} t . . . t {an} | P ∈ rol(D), ai ∈ (∃P)D, 1 ≤ i ≤ n

}
.

In the definition above, TUNA ensures that UNA for DBox individuals is pre-
served, Tcon(D) fixes the extension of concept names appearing in D, and Trol(D)

fixes the extension of a role names appearing in D.

13

Franconi, Ibáñez-Garćıa, and Seylan

Lemma 5.2 Let K = (T ,D) be a ALCFI-KB and q be a CQ. Then K |= q
if and only if τO(K) |= q.

Note that T ′ is a TBox in ALCO. Thus, 5.2 holds for ALC with DBoxes and
any of its extensions we consider.

The reduction on the other direction is a little bit more intricate since
UNA is not typically made in ALCFIO; but we have it in ALCFI, if we
consider DBoxes. We shall show that, CQ entailment in ALCFIO without
UNA can be reduced to query entailment w.r.t. an ALCFI-KB with DBox
D, where]adom(D) = 1. Note that in such KBs the UNA is not relevant.

Let K = (T ,A) be an ALCFIO-KB, and q a CQ. We construct the KB
τD(K), and the query δ(q), such that one single individual occurs in τD(K). For
each a ∈ adom(K), introduce a new concept name Aa, and a new role name Ra.
We also use a fresh individual name o ∈ NI such that o 6∈ adom(K)∪ adom(q),
and a concept name Ao. For each C ∈ con(K), denote by δ(C) the concept
obtained from C by replacing every nominal {a} occurring in C with Aa. We
extend δ to T as follows: δ(T) = {δ(C) v δ(D) | C v D ∈ T }.

Set D = {Ao(o)}. Then, τD(K) = (δ(T) ∪ T ′,D), where T ′ consists of the
following axioms for each a ∈ adom(K).:

• Aa v ∃R−a .Ao,
• Ao v≤ 1Ra,
• Ao v ∃Ra.Aa

Furthermore, for each C(a) ∈ A, and each P (a, b) ∈ A, we have the following
axioms:

• Ao v ∃Ra.δ(C),
• Ao v ∃Ra.∃P.Ab.
Finally, δ(q) is the CQ obtained from q by replacing every occurrence of a ∈
adom(K) in q with a new variable xa, and appending the atom Aa(xa) to q.

Intuitively, Aa acts as the nominal {a}. With the axioms above we connect
the instances of concept names Aa around the only instance of Ao with the
functional role Ra. This guarantees that there is at most one instance of Aa
in every model of τD(K). The following lemma shows the correctness of the
reduction.

Lemma 5.3 Let K = (T ,A) be a ALCFIO-KB and q be a CQ. Then K |= q
if and only if τD(K) |= δ(q).

6 Discussion

In this paper, we characterized the data complexity of query entailment in
DL-LiteF with DBoxes (Theorem 4.16). The exact combined complexity of

14

Franconi, Ibáñez-Garćıa, and Seylan

this problem remains open. It would also be interesting to study these prob-
lems for other logics in the DL-Lite family. The coNP lower bound argument
(Lemma 4.1) goes through even for a very simple logic in this family. Then the
challenge is to identify a fragment of DL-Lite for which query answering with
DBoxes is tractable. In the case of expressive DLs, we showed that the com-
bined complexity of query entailment in ALCFIO is complete for the same
complexity class as query entailment in ALCFI with DBoxes (Theorem 5.1).
Our reductions do not work for the case of data complexity since they encode
the data into the TBox, which is supposed to be fixed. It is an interesting
question if such a characterization also exists for data complexity.

References

[1] Abiteboul, S., R. Hull and V. Vianu, “Foundations of Databases,” Addison-Wesley, 1995.

[2] Areces, C. and B. ten Cate, Hybrid logics, in: P. Blackburn, J. van Benthem and F. Wolter,
editors, Handbook of Modal Logic, Elsevier, 2007 .

[3] Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-Schneider, editors,
“The Description Logic Handbook: Theory, Implementation, and Applications,” Cambridge
University Press, 2003.

[4] Blackburn, P., M. de Rijke and Y. Venema, “Modal logic,” Cambridge University Press, New
York, NY, USA, 2001.

[5] Calvanese, D., G. D. Giacomo, D. Lembo, M. Lenzerini and R. Rosati, Data complexity of
query answering in description logics, in: P. Doherty, J. Mylopoulos and C. A. Welty, editors,
KR (2006), pp. 260–270.

[6] Calvanese, D., G. D. Giacomo, D. Lembo, M. Lenzerini and R. Rosati, Tractable reasoning and
efficient query answering in description logics: The DL-Lite family 39 (2007), pp. 385–429.

[7] Glimm, B., Y. Kazakov and C. Lutz, Status qio: An update, in: Proceedings of the 24th
International Workshop on Description Logics, 2011, to appear.

[8] Glimm, B., C. Lutz, I. Horrocks and U. Sattler, Conjunctive query answering for the description
logic shiq, J. Artif. Intell. Res. (JAIR) 31 (2008), pp. 157–204.

[9] Goré, R., Tableau methods for modal and temporal logics, in: M. D’Agostino, D. M. Gabbay,
R. Hahnle and J. Posegga, editors, Handbook of Tableau Methods (1999), pp. 297–396.

[10] Horrocks, I. and U. Sattler, A tableau decision procedure for SHOIQ, J. Autom. Reason. 39
(2007), pp. 249–276.

[11] Levy, A. Y. and M.-C. Rousset, Combining horn rules and description logics in carin, Artif.
Intell. 104 (1998), pp. 165–209.

[12] Ortiz, M., D. Calvanese and T. Eiter, Data complexity of query answering in expressive
description logics via tableaux, J. Autom. Reasoning 41 (2008), pp. 61–98.

[13] Papadimitriou, C. H., “Computational complexity,” Addison-Wesley, 1994.

[14] Rudolph, S. and B. Glimm, Nominals, inverses, counting, and conjunctive queries or: Why
infinity is your friend!, J. Artif. Intell. Res. (JAIR) 39 (2010), pp. 429–481.

[15] Schwendimann, S., A new one-pass tableau calculus for pltl, in: TABLEAUX ’98: Proceedings
of the International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (1998), pp. 277–292.

[16] Seylan, I., E. Franconi and J. de Bruijn, Effective query rewriting with ontologies over dboxes,
in: C. Boutilier, editor, IJCAI, 2009, pp. 923–925.

15

	Introduction
	Preliminaries
	ALCFIO
	DL-LiteF
	Conjunctive Queries

	DBoxes
	Data Complexity of CQ Entailment in DL-LiteF
	Relating ALCFIO to ALCFID
	Discussion
	References

